Optimized for performance

VSort for Apple Silicon

A high-performance sorting algorithm leveraging NEON vectorization and Grand Central Dispatch to deliver unparalleled speed on Apple Silicon hardware.

View on GitHub

Key Features

NEON Vectorization

Processes multiple elements simultaneously using 128-bit vector registers, maximizing throughput and minimizing cycle time per element on Apple Silicon processors.

01

Grand Central Dispatch

Efficiently balances workloads across all available CPU cores, dynamically adjusting thread allocation based on current system load and data characteristics.

02

Adaptive Algorithm

Selects optimal sorting strategies based on input characteristics, seamlessly switching between algorithms to maximize performance for any data pattern or distribution.

03

Performance

Benchmark results comparing vsort against standard algorithms across different array sizes

Tested on Mac Mini M4 with 24GB RAM
vsort
quicksort
mergesort
std::qsort

Benchmark Results

Size vsort (ms) quicksort (ms) mergesort (ms) std::qsort (ms)
10,000 0.33 (baseline) 0.36 (1.09×) 0.33 (1.00×) 0.48 (1.46×)
100,000 1.20 (baseline) 4.14 (3.45×) 3.62 (3.02×) 5.23 (4.36×)
1,000,000 10.09 (baseline) 44.87 (4.45×) 39.81 (3.95×) 59.88 (5.94×)

Installation

1

Clone the repository

git clone https://github.com/davidesantangelo/vsort.git
2

Build the library

cd vsort mkdir build cd build cmake .. cmake --build .
3

Use in your project

#include "vsort.h"

// Create and initialize an array
int array[] = {5, 2, 9, 1, 5, 6};

// Calculate the size of the array
int size = sizeof(array) / sizeof(array[0]);

// Sort the array using vsort
vsort(array, size);